AD-RA148 192 PERFORHRNCE EVRLURTXDN OF A DHTRBRSE SYSTEM IN A 11
MULTIPLE BRCKEND CONFIGURATIONS(U> NAVAL POSTGRADUATE
' SCHOOL MONTEREY CA S A DEMURJIAN ET AL. OCT 84
UNCLASSIFIED NP552-84-019 F/G 9/2 NL

¥

(@)
PEE

EEEE

E——— E
[
[] I o

. mus -
v
— 1.8 3
"t
. S

e
o v
Ye s
()

-

7 ?.;'".'1:"-
R A

MICROCOPY RESOLUTION TEST CHART
BUREAY “: 1963~ A

ol

ct

o™ ¥ 7 -
2 Syt
v,

L
.

"8
RN

T AT N T T K TN
B YA VR NPT S A N MIREAN
p AT .x.p'..r.f PP A 2 M A AT
LSRR QAATY CHOALROTLARATG Ah Sty
PONLC PO agaiatalalatatat i i et

NPSS52-84-019

‘s NAVAL POSTGRADUATE SCHOOL

: Monterey, California

e
.
.
|
|
% |
= 1t
R RS
. s .A:.
Calit
‘- [Tt
ORI
3 DN
A
LI
L
h..'.,
A
War's

._:U
-
R

AD-A148 192

[~ PERFORMANCE EVALUATION OF A DATABASE SYSTEM
IN A MULTIPLE BACKEND CONFIGURATIONS

Steven A, Demurjian, David K. Hsiao, Douglas
S. Kerr, Jai Menon, Paula R. Strawser,
Robert C. Tekampe, Robert J. Watson

gy
PO

t

. iy

a

PRt
*..
o

.
. Y
oL,
ot
cad

.
o
P
CIA
o @

-
Pl

[

13

October 1984

Lalagitels

o
it

(]
')
L8 a2,

& -":' o
-8

’
o e
. 5t
LA

:'-l‘;.'v"-.‘- -

R

Approved for public release, distribution unlimited
Prepared for: L_

Chief of Naval Research it
Arlington, VA 22217 E;.

[G S
o Paa-at

OTIC FILE CORY

A A s R R S S R S R R

ATATINS : =

o i~ ™ N 4 N S O et e B T SRt I S I S D SRR A S AT OISR SIS TR BN KD NI WOR N W W™y, PP I W *

-

0

-

0 NAVAL POSTGRADUATE SCHOOL i
i Monterey, California 2
BN R

T

Commodore R, H. Shumaker D. A. Schrady

¥ Superintendent Provost .
N X3
N .;. -:_
el .
":T' ’t:
2 The work reported herein was supported by Contract N0O0014-WR-24058 i
N form the Office of Naval Research f

Reproduction of all or part of this report is authorized. ._
This report was prepared by: f
7 4ﬂt"b/(f . dés} 46-\ .

DAVID K. WSTAD

. Professor of Computer Science E
b
o’ f"‘

Reviewed by: »

; ; \
: . b
Dean of Information and PolNcy
Sciences
.
-y
K '0'
N
»
YA
30
M .
."-‘:,
v 3)
.~ < ,:I
.- P \;
A%l
-; o
Q) N A
L N
2 X
)
— '«
X .
- + ‘e
3 o
] Y
. I
y e
L)
: e,
4 A
) Q\;l‘
o :.C‘,.l
PR B e D L e e L L e e U e s e e e

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

§ ——————————
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

A . NUM ATALOS

3 NPS52-84-019
8. TITLE (and Subtitie) 5. TyPg OF AEPOAYT & PEMOD COVERED
Performance Evaluation Of A Database System

L In a Multiple Backend Configurations

g 6. PERFOMUNG ORG. REPORT NUMBER

T AGTHOR(S) T. CONTRACY OGN SRARY wonltReG |
Steven A, Demurjian, David K. Hsiao, Douglas S.
Kerr, Jai Menon, Paula R, Strawser, Robert C.
Tekampe, Robert J. Watson

: e ——————————— =P —y—%
= . . GRAM EL KN 3
: 9. PERFORMING ORGANIZATION NAME AND ADDRESS » E:g ™" "i& T3 Tnim s TASK

Naval Postgraduate School

Monterey, California 93943 61153N; PRN14-08-01
NOON1484WR24058
. N 1. CONTROLLING OFFICE NAME AND ADDRESS 13. REPOAYT DATE
- Chief of Naval Research r_(lt‘.t.n.l:e.r_l.‘m.dL
N Arlington, Virginia 22217 . |3 WuuBER OF PASES
Ty MONTTORING AGENCY NAME 8 ADDRESS(IF difforent frem Contrelling Offies) | FI5. SECUMTY CLASS. (of oie repory 1
a unclassified
Tooe SRt

. 176 GISTRIBUTION STATEMENT (of this Repart)

17. DISTRIBUTION STATEMENT (of the sbotract entered in Bloch 30, I ditforant from Repert)

19. SUPPLEMENTARY NOTES

19. KEY WORDS (Cantinue on roverse side If ay and idontily by bileck number)
LY
[0, AGSTRACT (Continwe a» oide sy and identity by Diook aumber)
i The aim of this performance evaluation is twofold: (1) to devise bench-
AN marking methodologies to the measurement of a prototyped database system in

multiple backend configurations, and (2) to verify the performance claims as
projected or predicted by the designer and implementor of the multi-backend
database system known as MBDS,

. T LA AR ORPUR PUR LA
. . . o Bat g % %Y, 000, K O,
» P S A 2fel ot Ve lel te

Despite the 1imitation of the backend hardware, the benchmarking experiments E:I:-:’.:

have proceeded well, producing startling results and good insights, By collec- wINT

i’ [y
o AN
’ DD , %7 473 oo oF 1 nov 68 1s ossoLETE W
. /N 0102- LK 014- 4401 SSCUMTY CLARPICATION 67 Tt DASE fWhen Dase Besred b
e e i Tt o N N B e N S L i g S S NN AT T 4 \'Zx"-"."-".~'Z--'Z--‘i°::‘.:l:'

ERE LY MR TR

DI M Sl i~y
. - a iR

o ™ b P W L

> S0 il ISR S CON IS o N

unclassified

7“”?'6&”’!"6"!“”7“‘8’“‘(‘..‘.“ .

O

1

‘
1IN

-fscopic data such as the time,

mfomm n&sure-ents of MBDS have been conducted. !y cot‘hcting micro-
tering and leaving a system process, the internal
performance measurements of MBDS have been carried out. Methodologies for com-
structing test databases, directories, and requests have been devised and utiliz-
ed. The performance evaluation studies verify that (a) when the database remains
the same the response time of a request can be reduced to nearly half, if the
number of backends and their disks is doubled; (b) when the response set of a
request doubles, the response time of the query remains nearly constamnt, if the
number of backends and their disks is doubted. These were the performance clatms
of MBDS as predicted by its designer and implementor.

pare—

\i,cqukL-““‘
e e ettt

e P
e

rivution/

c ety
Y atlability Codol

Ava 11 aﬂd/or

special

e it Y

Dist

g -‘»

$/N 0102- LF-014- 660}

SECURITY CLASSIFICATION OF THIS PAGE(Then Date Entered)

N R N AT A AT I R NI AT AT R RN AT RN

B ICIRY
''''''

B T T S T O TR & W R RN 2o o1 KL It T, s WG N T T N R R N R IR R A s S

PERFORMANCE EVALUATION OF A DATABASE SYSTEM 7
\ IN MLTIPLE BAQEND CONFIGLRATIONS %
Steven A. Demurjian, Devid K. Hsiao, Douglas S. Kerr, Jai Menon, P"}-".:‘
‘ Paula R. Strawser, Robert C. Tekampe, Robert J. Watson = EE
2 R
k. October 1984
ABSTRACT ;
The aim of this performance evaluation is twofold: (1) to devise bench-
marking strategies for and apply benchmarking methodologies to the measurement
of a prototyped database system in multiple backend configurations, and (2) to
verify the performance claims as projected or predicted by the designer and
implementor of the multi-backend database system known as MBDS.
Despite the |imitation of the backend hardware, the benchmarking experi-
ments have proceeded wel!, producing startling results and good insights. By
col lecting macroscopic data such as the response time of the request, the
oxtamal| performance measurements of MBDS have been conducted. By collecting
o microscopic data such as the time entering and leaving a system process, the
3 internal performance measurements of MBDS have been carried out. Methodolo-
j gies for constructing test dstabases, directories, and requests have been dev-

ised and utilized. The performance evaluation studies verify that (a) when
the database remains the same the response time of a request can be reduced to
nearly half, if the number of backends and their disks is doubled; (b) when
‘ the response set of a request doubles, the response time of the query remains
" nearly constant, if the number of backends and their disks is doubled. These
were the performance claims of MBDS as predicted by its designer and implemen-

=

N
R
.y o
‘e
o .
+
> J
)
N
L
- e *
LAY
.
L2
..

* reparted in is_Suppo -24068
a
rom t‘: &? ce o?. %val Ruonr wmfwo

r § rch un;),' 1
: o S, A, r'ian re mth tory for D N
t ; .m ol 5250
' form Korr is m , RN
. unco, vorsut ‘ ..b‘f

. s with

" . . R, rror us % ST
v s RIS
: rmo)
] tlon .B Wéﬂ"l nmmg Dwnsocn, RN
! f‘lﬂ. m, AR
] ’.'-:'-':1
] P T.t4
g '\
S A N T I A A N AN Y. 4 B T N LG R R R VO Y L MBI IR R A S A N

Eraactadl S I Wl AL NI S A Al Tl B i SN M Nl /IR M N eI S L L S Rl Aol e AR H A AL i S\ d <o ; i

§ £,

A

1. INTROOUCTION
& The multi-backend database system (MEDS) is » database system designed

specifically for capacity growth and performance enhancement. MBDS consists

¢ of two or more minicomputers and their dedicated disk systems. One of the

, minicomputers serves as a control ler to broadcast the requests to and receive
. the results from the other minicomputers, which are configured in a parallel

manner and are termed as backends. All the backend minicomputers are identi-

cal, and run identical software. The database is evenly distributed across the

disk drives of each backend by way of a cluster-based data placement algorithm

unknown to the user. User access to the MBDS is accomplished either via a
. host computer, which in turn communicates with the MBDS controller, or with
‘- the MBDS controller directly. Communication between the controller and back-
N ends is accomplished using a broadcast bus. An overview of the system archi-
B tecture is given in Figure 1.

There are two basic performance claims of the multi-backend database sys-

tem, which have been projected in the original design goals [HsisSls,

Hsia81b]. The first claim states that if the database size remains constant,

then the response time of requests processed by the system is inversely pro-
5 portional to the multiplicity of backends. This claim implies that by increas- A
N ing the number of backends in the system and by replicating the system i
software on the new backends, MBDS can achieve a reciprocal decrease in the :.

response time for the same requests. The second claim states that the ‘
response time of requests is invariant when the response set and the multipli- X
city of backends increases in the ssme proportion. This claim implies that s
. when the database size grows, the response set for the same requests will "-‘
- grow. By increasing the number of backends accordingly, MEDS can raintain a
constant response time.
? In this paper we provide a preliminary evaluation of the validity of the i:\.:
5 MBDS performance claims. The main focus of this paper is on the external .:"'
R - performance measurement of MBDS. The external performance measurement evalu- ‘\, :
}:Z stes 8 system by collecting the response times of requests. External perfor- \!
s mance measurement is a macroscopic evalustion of the system. Ingres, Oracle, d':4-
o and the Britton-Lee IDM/500, have all been evalusted using external perfor- I
_ mence measurement techniques [StraB4, SchiB4]. We also seek to provide some -
2 insight into the internal performence of MBDS. Internal performance messure- E{
% ment provides a microscopic view of s system, by collecting the times of the '_..,
» e

~

\J

)

- o o . PUIC J B J) P SR R h) A IR RSCR I R L I I R I P LNV R NN LTe L T Y
LA _'.-_ ., .."" ..':- KA ‘-'"n“:n' L "\':".\ Sy ..‘... . :.' o ~_°.. K ._'...‘--' ’\'\'.\‘ CORRA AN .\'.\-:\-._‘- ~ '..--\-'\4'\- ..-\.f.‘-.\.‘ > s‘.‘,‘\- _‘n'\-‘

-

L)
S

i P T B Rk I T e STt It A ST RN I Tk S BN E A VKL AL matid v ‘axs B M3 ST b PR AL NP e I o g Ny g

Re! —— o e e e <4 s i A e v . e A s - o mtmaes - I -

'y
N

0,
YT

g
s o
]

R

.
,’

. one Or more
) disk draves N
; \—J :}5.
... one or more

o " |disk drives

‘}..n

. To the
. host

i compute NN
-
o LSS
s "
. L3
: NN
N
] "
, o
one or more
L disk drives
Broadcasting : :
- bus '.{-..
. (LY
- e
J)
2] ﬁf‘\'.
o &.-‘_
o g.':. d
. el
o {"*,
. Loy
P P
¢ b oy
‘2 . oo

” Figure 1. The MDBS lardware Organization
é ' R
Y NS
o \';‘.
' r - -
Sy

‘ o

4 A0
- LY -—g. L BJ LS B A - - . - - -
R N A e AR

2

- e o o= o . . e
T e I AT A AT A TATA AT A N A AT A W

I A

i TR SRS RN SR I -« 4 o LB TLY i 5 20U W o rpb = P T LY S

N 2,
3
" 4

TR
R
work distributed and performed by the system components. E
The remainder of this peper is organized ss follows. In Section 2 we ‘
) provide s brief overview of the multi-beckend database system. In Section 3 R
we discuss the general testing strategy thst was used to evaluste the system. E:ES
In Section 4 we examine the evaluation results. Finally, in Section 5 we con- f:
‘ clude this peper and sunmarize the results.
2. THE MATI-BACKEND DATABASE SYSTEM (MBDS)

The current hardware configuration of MBDS consists of a VAX-11/780 (WS .
0S) running as the control ler and two POP-11/44s (RSX-11M 0S) running ss beck- '
ends. Intercomputer communication is supported by three peraliel communication <

: links (PQL-11Bs), which is a time-divisioned-multiplexed bus. The implementa— &3

: tion efforts are documented in [Kerr@2, He&2, BoynS3s, DemBs]. MDS is a 53

i message-oriented system (see [BoynS83b)). In a message-oriented system, esch
process corresponds to cne system function. These processes, then, communicste Wt
n among themselves by pessing messages. User requests are passed between
> processes as messages. The messege paths between processes are fixed for the

system. The MEDS processes are crested at the start-up time and exist '
throughout the entire running time of the system. : :“

In the rest of this section we begin by discussing the date model of &
MEDS, the attribute-besed dats model. Then, we present a brief review of the A
attribute-based date language (ABDL) of MBDS by focusing on the retrieve
request only. Next, we discuss the directory structure used in the system, z;,-
since it plays an integral role in the specification of the test datsbese (see Eg
Section 3). Lastly, we overview the execution of s RETRIEVE request, to pro- Tk
vide a general overview of the structure snd the operation of MBDS. 1]
2.1. The Attribute-Based Date Mode! ;,.::

In the attribute-bssed dete model, dete is modeled with the constructs: RS

. datebese, file, record, sttribute-value pair, directory keyword, directory,
record body, keyword predicste, and query. Informally, s datebsse consists of G

a ocollection of files. Each file contains a group of records which are :5:’

’ characterized by 3 unique set of directory keywords. A record is composed of E:f
two perts. The first pert is a collection of sttribute-value peirs or key- &

words. An attribute-value pair is s member of the Cartesian product of the Do
sttribute neme snd the value domin of the attribute. As an example, <POFU- ‘é:

N

NN A A N

A AN

XXX

0 o " e . - B
N A A,

OO

BN

LATION, 25000> is an attribute-value pair having 25000 as the valus for the
population attribute. A record contains at most one attribute-value pair for
each attribute defined in the database. Certain attribute-value pairs of a
record (or a file) are called the directory keywords of the record (file),
because either the attribute-value pairs or their attribute~value ranges are
kept in a directory for addressing the record (file). Those attribute-value
pairs which are not kept in the directory for addressing the record (file) are
called non—directory keywords. The rest of the record is textual information,
which is referred to as the record body. An example of a record is shown
below.

(FILE, Census)>, <CITY, 'bntoroy)t ﬁ%&aghm.)

The angle brackets, <,>, enclose an attribute-value pair, i.e., keyword. The
curly brackets, {,}, include the record body. The first attribute-value pair
of all records of a file is the same. In particular, the attribute is FIE
and the value is the file name. A record is enclosed in the parenthesis. For
example, the above sample record is from the Census file.

The database is accessed by indexing on directory keywords using keyword
predicates. A keyword predicate is a tuple consisting of an attribute, a
relational operator (=, !=, >, €, >=, <=), and an attribute value, e.g., POPU-
LATION >= 20000 is a keyword predicate. More specifically, it is a greater-
than-or-equal-to predicate. Combining keyword predicates in disjunctive nor-
mal form characterizes a query of the database. The query

(RREC & R ER 8t) o

will be satisfied by all records of the Census file with the CITY of either
Monterey or San Jose. For clarity, we also employ parentheses for bracketing
predicates in a query.

2.2. The Attribute-Based Date Language

MEDS is designed to perform the primary database operations, INSERT,
DBLETE, WDATE, and RETRIEVE. Additions!ly, an aggregate operation (i.e.,
AVG, COUNT, SUM, MIN, or MAX) may be applied when using the RETRIEVE opera-

‘tion. Users access MBDS through the host computer or the controller by issu-

ing @ request. A request is a primary operation along with a qualification. A
qualification is used to specify the information of the database that is to be

IO
l..‘D.‘

Y XARR

‘S

;‘":,'o

I IR I IO I OSSN I TR ‘Bl Pl I PR I oA W

R IR A My o 33, g S A S 0 0 gl T 18

performed by the primery operation. A user maoy wish to treat two or more

requests as a transaction. In this situation, MBDS executes the requests of

the transaction without permuting them, i.e., if T is a transaction containing

the requests <RIDR, then MBDS executes the request R1 before the request

R2. Finally, we define the term traffic-unit to represent either a single
. request or a transaction in execution.

Now, let us examine the retrieve request, the main focus of our study in
this paper. An example of a retrieve request would be:

RETRIEVE ((FILE = Census) and (POPULATION > 10000)) (CITY)

which retrieves the names of all those cities in the Census file whose popula—
tion is greater than 10000. Notice that the qualification component of a
retrieve requ=st consists of two parts: the query which specifies records of
the database to be retrieved and the target list which specifies the
attribute-value(s) to be returned to the user. Aggregate operators may be
applied to attributes listed in the target list. In this example, there is
the query of two predicates ((FILE = Census) and (POPULATION > 10000)) and the
target list (CITY).

2.3. The Directory Tables

To manage the database (often referred to as user data), MBDS uses direc-
tory data. Directory data in MBDS corresponds to attributes, descriptors, and
clusters. An attribute is used to represent a category of the user data; e.g.,
POPULATION is on attribute that corresponds to actual populations stored in
the database. A descriptor is used to describe a range of values that an
attribute can have; e.g, (10001 < POPULATION < 15000) is a possible descriptor
for the attribute POPULATION. The descriptors that are defined for an attri-
bute, e.g., population ranges, are mutually exclusive. Now the notion of a
cluster can be defined. A cluster is a group of records such that every record
in the cluster satisfies the same set of descriptors. For example, all records
with POPULATION between 10001 and 15000 may form one cluster whose descriptor
is the one given above. In this case, the cluster satisfies the set of a sin-
gle descriptor. In reality, a cluster tends to satisfy a set of multiple
descriptors.

Directory information is stored in three tables: the Attribute Table A
(AT), the Descriptor-to-Descriptor-Id Table (DDIT) and the Cluster-Definition Y

o ¢
» % % h Ta g
Sl o

-5~

Table (CDT), examples of which are given in Figure 2. The Attribute Table maps
directory attributes to the descriptors defined on them. A sample AT is dep-
icted in Figure 2a. The Descriptor-to-Descriptor-Id Table maps each descrip-
tor to a unique descriptor id. A sample DDIT is given in Figure 2b. Note
that the pointers shown in Figure 2b are not placed in the DDIT table but are
shown here for clarity in order for us to relate to the AT of Figure 2a. The
Cluster-Definition Table maps descriptor-id sets to cluster ids. Each entry
consists of the unique cluster id, the set of descriptor ids whose descriptors
define the cluster, and the addresses of the records in the clusters. A sample
DT is shomn in Figure 2¢ Thus, to access the user data, we must first access
directory data via the AT, DDIT, and CDT.

In designing the test database, one of the key concepts is the choice of
the directory attributes in order to determine the necessary descriptors and
therefore clusters. Thus, we provide a brief introduction to the three clas-
sifications of descriptors. A type-A descriptor is a conjunction of a less-
than-or-equal-to predicate and a greater-than-or-equal-to predicate, such that
the same attribute appears in both predicates. For example, ((POPULATION >=
10000) and (POPULATION <= 15000)) is a type-A descriptor. A type-B descriptor
consists of only an equality predicate. (FILE = Census) is an example of a
type-B descriptor. Finally, a type-C descriptor consists of the name of an
attribute. The type-C attribute defines a set of type-C sub-descriptors.
Type-C sub—descriptors are equal ity predicates defined over all unique attri-
bute values which exist in the database. For example, the type-C attribute
CITY forms the type-C sub—descriptors (CITY=Cumberland) and (CITY=Columbus),
where "Cumberiand” and "Columbus" are the only unique database values for the
cT1Y,

2.4. The Execution of a Retrieve Request

In this section, we describe the sequence of actions for a retrieve
request as it moves through MBDS. The sequence of actions will be described in
terms of the messages passed between the MBDS processes. The MBDS control ler
processes are Request Preparation (REQP), Insert Informetion Generation (IIG),
and Post Processing (PP). The MBDS backend processes are Directory Management
(OM), Record Processing (RECP) and Concurrency Control (CC). For completeness,
we describe the actions which require data aggregation.

S A R AR RO NG R A AR A A AR AR AL A S M NLACS AN M ARSI AN, S S ST A S S A M R Sl et ke, o8,

U
‘&

>
‘:‘

)
T v
KEAARIAS {

!

o Attribute Ptr 2:"
3 POPULATION | P o
5 CITY C L-
. FILE F !.;.‘-:
N i
N »'::‘.‘
N Figure 2a. An Attribute Table (AT) =
2’ . .:’1._.

b

5 P-> 0 < POPULATION < 50000 | D11
50001 < POPULATION < 100000 | D12
= 100001 < POPULATION < 250000 | D13
5 250001 < POPULATION < 500000 | D14
5‘: c-> CITY = Cumber|and D21
CITY = Columbus D22
F-> FILE = Employee D81
FILE = Census Da2

P RY) g PRS- CIRE R BAK
PN ADAUL TR
AORAN B SV DA o

.
o"a‘ y

B

N
)

. MERE XY M RE T
. LA
.. e e et

AP PO
AL A

Dij: Descriptor j for attribute i.

Figure 2b. A Descriptor-to-Descriptor-1d Table

LA

1d Desc-Id Set Addr
C1 | {011,021,081} | A1,A2
C2 | {D14,D022,032} | A3

ST
LA 4

Figure 2c. A Cluster-Definition Table (CDT)

Figure 2. The Directory Tables h

First the retrieve request comes to REQP from the host computer or the g
control ler itself. REQP sends two messages to PP: the number of requests in o
]

.] -i. .'I."..":' b

the transaction and the aggregate operator of the request. The third message o
¥ sent by REQP is the parsed traffic unit which goes to DM in the backends. DM .\3
2 sends the type-C attributes needed by the request to CC. Since type-C attri- f—::f
' butes may create new type-C sub-descriptors, the type-C attributes must be D
locked by CC. Once an attribute is locked and descriptor search can be per- o
o formed, CC signals DM. DM will then perform Descriptor Search on m/n =
ra .‘-:
4 H
-7 %
LY ‘.J
hY LS
N Y I LNPL NI N [Ny v'-”"j
.'ﬁ:'..'f;‘.-‘};’f -’:“-"';..". AT AL ¢ '.; I‘,‘ "‘h N LAY ‘. "'"',. . '.- :.-‘. _:' ‘:'. A ‘_'.“ A T : ';..'.:-".:.:\'o‘.‘f..f.:'-"_l.'.’\',‘-.‘-',\' '-..‘~ ag" \}‘ XS]

C T Nl MW N W Ky X S AP T N " A 0 L TR L AT W AT G B TP O THE 2 RN R A A 2L i ol w3 RS, 5 DA 6 L at R .

predicates, where m is the number of predicates specified in the query, and n
is the number of backends. DM then signals CC to release the lock on that
attribute. DM will broadcast the descriptor ids for the request to the other
backends. DM now sends the descriptor-id groups for the retrieve request to
CC. A descriptor-id group is a collection of descriptor ids which define a
set of clusters needed by the request. Descriptor-id groups are locked by CC,
since a descriptor-id group may define a new cluster. Once the descriptor-id
groups are locked and Cluster Search can be performed, CC signals DM. DM wi il
then perform Cluster Search and signal CC to release the locks on the
descriptor-id groups. Next, DM will send the cluster ids for the retrieval to
CC. CC locks élust,er-ics, since a new address may be specified for an exist-
ing cluster. Once the cluster ids are locked, and the request can proceed
with Address Generation and the rest of the request execution, CC signais DM.
DM will then perform Address Generation and send the retrieve request and the
addresses toe RECP. Once the retrieval has executed properly, RECP will tell
CC that the request is done and the locks on the cluster ids can be relessed.
The retrieval results are aggregated by each backend and forwarded to PP. PP
completes the aggregation after it has received the partial resuits from every
beckend. When PP is done, the final results will be sent to the user.

3. THE BENCHWARK STRATEGY

In this section we analyze the basic benchmark strategy for the prelim-
inary performance evaluation of the multi-backend database system. The bench-
mark strategy focuses on col lecting macroscopic snd microscopic measurements
on the systems performance. Macroscopic measurements correspond to the exter-
nal performance measurement of the system, which collects the response time of
requests that are processed by the system. Internal performance measurement
involves the detailed measurement of the working processes of the system. In
perticular, we are measuring the time taken to process a particular message in
MBDS. Each MBDS process has a group of functions, called message-handlers,
that control and oversee the processing of a message. The time spent in a
psrticular message-handler is collected in internal performance messurement.

To adequately conduct both the interns! and externs! performance measure-
ment of the system, software wes developed to collect timing informstion and
data. The performance software was bracketed in conditione! compilstion
statements to facilitate an essy transition between a testing system snd » L1
rumning system. We constructed two software beses of the MEDS. The first

f; .:‘:" v
YN N,

R A D A A P A R R

"~ . . v T ——— > . A~

' 4%

KR

A F.,.

3 consisted of the MIS code and only the testing software required for external 2
, performence messurement. The second had the testing software for both the

internal and external performance measurement software compiled in. We hope

| to use the difference in timings collected from the two bases to calculate the

. overhead incurred by the addition of internal performance measurement \

X software. X

L. The rest of this section is organized as follows. First, we give a 2]

high-level description of the test database orgenization and system configura-

tions used in the performence evalustion. Next, we present a detailed discus- T

sion of the test database organization. Third, we examine the request set L

used to collect the timings. Finally, we review the relevant tests that are L-<

to be conducted, and the measurement statistics that are collected and calcu- e

lated. R

3.1. The Test Database Organization and Testing Configurations f::i'.:'-i

To properly evaluate a database system, various record sizes need to be L'",

used. The sizes are chosen based on the size of the unit of disk management. :'

In MBDS, this is the block. MBDS processes information from the secondary J

memory using a 4Kbyte block. Given a blocksize of 4Kkbytes, it was recommended E:i

X to construct the database with record sizes of 200 bytes, 400 bytes, 1000 R

- bytes, and 2000 bytes [Stra84). This gives a range of 2 to 20 records per :

N block. Since we are engaged in only the first test of MBDS, we limited the r\

< scope of the testing to a database with a 200 byte record size. t:

In addition, the virtual and physical memory |imitations of each backend .

& restricted the database size to a maximum of 1000 records per backend. This
limitation, coupled with the two software versions of the system and the need
to verify the two performance claims, led us to the specification of five dif-
ferent system configurations for the MBDS performance measurements. Table 1

'-\: :‘

: 2
TEST | No. of Backends | Records/Backend | Databese Size N

1 e

: 1 ‘ ::‘f:_.

(I lg | %% e

- ' e
; OB
- Table 1. The Measurement Configurations f__
: i
: - i
v .o...J
b
::'.j_;.__-:-{-;'.‘-‘,“.'(R N A AN A AN AN 20 2 AN A O LA B NN LN SRR -;._-;-.:.-:',-\.'

N N S W S0 o W SO AN A AR ST AN AIC A ARNCANKAFNICIE A AL A AN IO fCRP N RO S S e I PR AL RN o A AR A A o K oA it A
0 e
3 o
X displays the configurations. e
:' Tests A.E, B.E, and C.E are conducted without internal performence
software in place. Test A.E configures MBDS with one backend and one thousand
- records in the test database. Test B.E configures MBDS with two backends and ?:'.
-f;::j one thousand records split evenly between the backends. The transition from r:
N Test A.E to Test B.E is used to verify the first performance claim (see Sec- F:
o e

o tion 1). Test C.E also configures MBDS with two backends, but, the size of i
the database is doubled to two thousand records. The transition from Test A.E
to Test C.E is used to verify the second performence claim (see Section 1).
Test A.1 and B.I are conducted with internal performence software in place.
Test A.I configures MBDS with one backend and one thousand records in the test

AN e
. e et
.

. X
\
.y
e
ol P «
3 L4 ¢ o
2 ' ¢ n Y.

" database. Test B.I configures MBDS with two backends and one thoussnd records
-3 split evenly between the backends. The transitions from A.E to A.I and from \
B.E to B.I are used to determine the overhead incurred by the addition of
. internal performance measurement software. Overall, using these five confi- Ej
gurations, the verification of the MBDS performance and capacity claims is L
N simplified and the performance measurement. methodology of computing the inter- %2
nal measurement overhead is facilitated.
2 3.2. The Detailed Test Database Organization

¥ We have chosen the test record size to be 200 bytes. The 200-byte record

*- minimizes the primary memory required to store the record template. In actu-

- ality, a record of 198 bytes is used. The record consists of 33 attributes,

each requiring 6 bytes of storage. The record template is used to specify the

5 attributes, both the directory and the non-directory attributes, of the

= record. Of the 33 attributes listed (see Figure 3), INTE1 and INTE2 are
- directory attributes. MULTI and STROO to STR2D are non—directory attributes.

2 Attribute Name | Attribute Type 3;;:.:‘:#
s integer g
N integer N
-* ta

. string =3

string ——

v 1 string o

. . o od

"\‘: . + .‘v-“
> : ’:-"j
H)

. STR29 string vteg
v o]
- '\I

" Figure 3. The Record Template .,:-t.,'

.o ., 'v.:\
)]

o <
4 et

e A

:o .-_'.q
. R

<10~ .
-
) e

~ N
ﬁ' - . - - AP Y SR) . ‘e “e% WO IO - S cm . e . “a" e & "a b I TR IR SRR S I T IO Y ‘.'
\f,'.‘ .,'-r._-r,'._ *I: LN ,....._.'...r_.-_‘. \¢_.‘:\.__..\J\. ._....,_.-__.:,_.:_..‘\-'__.-__.~*~-.._.‘ --\,‘_.'\..\.._‘. __.‘\..-.‘..._ L OPCPURL AN :- A K

The descriptor types and the descriptor ranges for the two directory
attributes, INTE1 and INTE2, must aiso be defined. The values for INTEl1 are
classified by using five type-A descriptors, each of which represents a rangs
of 200, i.e., the ranges would be [1,200], [201,400], ..., [801,1000]), where
[2,b] is used to represent the type-A descriptor range. The values for INTER2
are also classified using type-A descriptors. The first twenty-three ranges
for INTE2 cover 40 values, with the last range covering 80 values, i.e., the
type-A descriptor ranges would be [1,40], [41,80], ..., [881,920], [621,1000].
The INTE2 descriptor ranges are not uniform.

Next, we examine the records which are generated and stored in the test
database. INTE1l and INTE2 have identical value, i.e., numbers, being the next
sequential number after the previous record, starting at 1. Therefore, the
one thousandth record would have the (INTE1l, INTE2) pair set to 1000. The
MLTI attribute, which is of the type of character string, is set to One for a
database of only 1000 records. The intent of this attribute is to incresse
the number of records per cluster in the database. This is done by setting
MLTI to Two, Three, etc., for each (INTE1l, INTE2) pair in the database.
Therefore, to double the size of the database, every (INTE1, INTE2) pair will
have an associated MILTI attribute with values of One and Two. The remaining
attributes, STROO to STR29, are set to Xxxxx as fillers for the rest of the
record body. Figure 4 depicts the general layout of the file for 1000 records
where MLTI is set to One.

INTE1 | INTE2 | MLTI | STROO | STRO1 | ... | STR29
1 1 Xx - Ax
2 2 gne o | Koo |1 | Kook
1000 1000 One Xooxxx | Xxxxx ce Axexxx

Figure 4. The Generated Records

The cross-product of INTE1 ranges and INTE2 ranges has resulted in the
specification of 24 descriptor groups for the INTE1l and INTE2 attributes. Cou-
pled with the record template, they generate a test database that contains 24
clusters. The first 23 clusters contain 40 records each. The last cluster
contains 80 records. To maintain consistency in the retrieval requests (dis-

-11-

IS A T .
. ‘.:._.o:...:.-.:'.-...{..f_' Y .r ..F\ ,‘-'".'\. _‘J' -r L

- . e - v
e A N e

’
'S

. ¢ v - R T T T
KR LI R L L A AN
x CateTa T e e . * ot
' R TN RS/ % A
. . S . '
e ST AP .". <
D MPREY R L R b fane 2

-

[y

RS
Wl

LS
l.l
ok
J.‘.J

rEd
R S e S
)
'y f
>3

5 o
e 32

o cussed in the next section), we avoid sny requests that access the lsst 80 S

& records in the test datsbese using the INTE2 sttribute.
- 3.3. The Request Set ' 3
-~ The request set. used for our performance measurement is given in Figure i
2 5. The retrievals sre a mix of single or double predicate requests. Since £
::_ the majority of the work done on a database is to retrieve dats, we limit our _)
) first measurements to only retrieve requests. In every request, 1/2 of the b
. target attribute values for each record is returned. The first request is for s
" only two records from two separate clusters. The second request retrieves 1/4 '
¥ of the database. Seven of the 24 clusters must be examined. All records in S
’ esch of the first six clusters are retrieved. Only 1/4 of the seventh clus- 4
ter, defined by the INTE2 range from 241 to 260, is retrieved. In the third o
request, 1/2 of the databsse is retrieved. Thirtesn of the 24 clusters must o

be examined. All records in each of the first twelve clusters sre returned. o
Only 1/2 of the thirteenth cluster, defined by the INTE2 rangs from 481 to =
5§20, is retrieved. The system searches only for records having values in the
INTE2 range from 481 to 500 in this cluster.

",

Thels e f
Hridr! " e

The entire datsbese is examined in the fourth request. The fifth request
retrieves 2/5 of the databsse. The query is divided into two predicates, to

‘3 e

Retrieval Request "\
= (INTE1=10) or (INTE1=230)

(INTE2 < 250)
(INTE2 < 500)

(INTE1 < 1000)
7 (INTE1<200) or (INTE1>801) o

(INTE1<400) or (INTE1>801) e
(INTE1 <= 201) N
(INTEL <= 401) S
(INTE1<=201) or (INTE1>=800) X
The Target Attribute-Values for Each: :

O 63 Yk TR SHRY. 3TRa SRS Sy

Figure 5. The Retrieva! Requests

omslmmAwnug
S

,*",- .0’ l..". A

_.,
..' .
4 s

P A |
L)
_,-,.? v,y

’ L]
" O.\ L3 .
LA R T

a L AEA
Y s::p"‘."':
2, 1% Sy ety Y,

-“..'-50

-12-

(XL WA
A4
Aty

A

.]
:;\}1.;"}.;\’5- :..;- YA '.0:' \{\}"' *‘I*\S',:v n'¢ ;’-}:O'a"s".'\",;n.‘.;l-'r:n",:“'- \;.‘-".:. ‘_: - :» : N ", . ..‘. -(.-":’ (SRR ..:"c.\- .'u..‘- ot \;‘\ ‘-\f

R ol Nl st a\ﬂs‘i;: ¥

n— 3
ar N

[\. 4‘

obtain sll records from the first five clusters, and the last four clusters.
The sixth request is a retrieval of 4/5 of the dastabase. Agsin the query is
divided into two predicates, to cbtain all records from the first 10 clusters,
and the last nine clusters.

. The seventh and eighth requests are similar in intent. The seventh
request examines 10 clusters, requiring only 1 record to be retrieved from the
. 6th cluster and needing all records from the first five clusters. The eighth

request examines 15 clusters, requiring only 1 record to be retrieved from the
11th cluster and needing all records from the first ten clusters. The ninth
and final request is similar to the fifth request. But unlike the fifth
request, ten additional clusters must be examined. Only two of the records
with INTE1 values of 201 and 801, are retrieved from the ten additional clus-
ters. Al|l records in the remaining nine clusters, |like the fifth request, are
also cbtained by this retrieval. Table 2, a presentation of the number of
clusters examined versus the percent of the datebase retrieved, is a synopsis
of the previous discussion in tabular form.

3.4. The Measurement Strateqy, Ststistics and Limitations

The basic measurement statistics used in the performance evaluation of
MBDS is the response time of request(s) that are processed by the database
system. The response time of a request is the time between the initial

Request Nflber of EL of
Numbe usters tgso
r &xammod rieved i
1 2 2 records RN
[(GASLS
2 7 25K R
3 13 50K SIS
4 24 (all) 100% R
LA
5 9 40% o
5 19 80K N
7 10 20% + 1 record '::"'jt"'
. 8 15 40% + 1 record 5'1':;':
9 19 40% + 2 records e,
N
: EA
Table 2. r of Cluste the PN
;h:cont. of the truwoaﬂd
e
R
13- hoQ
\:‘-.‘::
‘ .I. 'n.:

A "'f~f'~"'f' ,}}"ﬂ “."f. "‘ X CAKY ‘\"“‘*(5 \ \' " \ \}\"\ \ oY “\ " ~ \ \"h..-. \..s'-\.\'\.‘ ‘\" “ '. \ ‘ ‘.' ‘.
. Rl e i .,

AL W 250 SO N DM TN i P P R85 TP K IR ol iy K185 T B M L LIRS , W &R, A L A e N W W W N N 4 PP Sl LS

issuance of the request by the user and the final receipt of the entire
request sat for the request. The response times are col lected for the request
sot (see Figure 5) for each of the five configurations (see Table 1). Eech
request is sent a total of ten times per database configurstion. The response
time of each request is recorded. We determine that ten repetitions of each
request produce an acceptable standard deviation. Upon completion of the ten
repetitions for a request, we calculate the mean and the standard deviation of
the ten response times. There are two main statistics that we calculste to
evaluate the MBDS performance claims, the response-time improvement and the
response-time reduction.

The response~time improvement is defined to be the percentage improvement
in the response time of a request, when the request is executed in n backends
as oppoaed to one backend and the number of records in the dstabese remains
the sama. Equation 1 providas the formula used to calculate the responge-time
improvement for a particular request, where Configurstion B represemts n beck-
ends and Configuration A represents one backend. The response-time improvement
is calculated for the configuration peirs (A.E, B.E) and (A.I, B.I), reapec-
tively. The configuration pair (A.E, B.E) is evaluated for the retrieve
requests (1) through (9) (ses Tables 5 and 6). The pair (A.I, 8.I) is
evalusted only for the retrieve requests (1) through (8). Overali, the
difference in the collected times of the two configurstions, i.e., (A.X -
A.E), and (B.I - B.E), respectively, should provide us with a messure of the
overhead incurred when internal performance messurement software is present in

the system.
ime
The Configuration A
Rmomo—Tim = 1008 - a = 1008
rovement. ime
] g
Configuration B RS
505
Equation 1. The Response-Time-Improvement Calculation ,:"%:
oSS
The response-~time reduction is defined to be the reduction in response : .-_
time of » request, when the request is executed in n backends containing nx :
number of records as opposed to one backend with x number of records. Eque- . 5
tion 2 provides the formuls used to calculate the the response-~time reduction RV
for a perticulsr retrieval request, where configurstion A represents one back- ry
ond with x records and configuration B represents n backends, each with x %::I’
l‘ \
'
s
-14- : ..’ f
.
rzzs‘
B et A R A Ao N - S TN L S 2 LS PR

records. The response-time reduction is casiculated for the configuration peir

(A.E, C.E), for the retrieve requests (1) through (9).
Thfim g?

c R The Time 1008 « 1 Configuration B

3 H = -

» st R

3 Configuration A

¢

Equation 2. The Response-Time-Reduction Calculstion

The internal processing times of the message-handling routines which are
used to process a3 retrieval request are also timed. Retrieval (1) and
Retrieval (2) are selected to conduct internal timing. These requests are
selected since they retrieve the smallest portion of the test database and the
processing time for each request is minimal. Each message-handling routine is
timed independently of all others and each routine must process multiple
requests so that an accurate average may be computed for the time required to
process that request type. Sixteen message-handling routines are required to
process a retrieve request. If we send twenty requests to each routine, »
total of 320 requests must be processed by MBDS. Based on these figures, the
time required to conduct the internal performance measurement of a retrieval
that has a response time of twenty seconds will be approximately 107 minutes.
This figure does not include the administrative time required to process the
- internal measurement data. For this reason, we |imited the internal perfor-

mance measurement requests to requests (1) and (2).

Additionally, we also |imited the number of repstitions per message
handler to twenty. This is done to reduce the processing time per message
handler. However, this decision reduces the sccurscy of the internal perfor-
mance measurement, from ten-thousands to hundredths of a second. Thus, the

3 internal performance measurement times provide only a rough estimate of the
v time required to handlie the respective messages. There are additional |imita-
2 tions. The last two versions of MBDS differ in the implementation of the
directory tables, i.e., the AT, the DDIT, and the CDT. The newest version of

;- the system, called Version F, implements the directory tables on the secondary

. storage. The previous version, called Version E, stored the directory tables

- in the primery memory. The major roadblock that we have encountered in the

o performance measurement of MBDS has been the hardware |imitations of the back-

¢ .

¢ %
o -15- -,'-:.7
:
b o, T G G o A, L A A -:':-'-':':'I\"":"\.‘Z':"':"'}'.;~.

A e A ‘\atacs‘ Rt gl Mot Myl o oo, . W oe i i T W g 4 AP u P IP 5. PSR BRI Rk St e T (N N2 AR IEE X8R

"-",'-"!;“a‘,\l“'

. {'-

AT LR

~ 8 o]
RO

e,
3% .

EI%:
u':";

I w¢ NN

Ny n‘_ -' R A

VIR oy

'

e, W’;"?*’;” --.'-‘,‘"G“- R A A o P e T 2

end processors (POP-11/44) . With only 84K of virtus| memory per process snd @
total of 256K physical memory, we found that we could not increase the MBDS
system perameters to permit an extensive test of the system on a large data-
bese. These restrictions have forced us to benchmark the primery-memory-besed
directory menagement version of the system which, excluding the directory
table mansgement routines, is nevertheless equivalent in functionality to Ver-
sion F.

4. THE BENCHWRKING RESLLTS

In this section, we present the results cbtained from the performance
measurement of MEDS. We also review the results of external performence meas-
urement, overhesd incurred by internsl performence measurement software and
internal performence messurement. One final note, the units of measurement
presented in the tables of this section are expressed in seconds.

4.1. The Extermal Performance Msasurement Results

Table 3 provides the results of the external performence measurement of
MBDS without the internal performance measurement software. There sre three
perts to Table 3. Each pert contains the mean and the standard deviation of
the response times for requests (1) throud'\ (©), which are outlined in Section
3.3. The three perts of Table 3 repnsont three different configurations of
the MEDS herdwere and the database capacity. The first part has oonfngurod
MBDS with one backend and the database with 1000 records on its disk. The
second pert has configured MBDS with two backends, with the database of 1000
records, split evenly between the disks of the backends. The third pert has
configured MBDS with two backends and with a dstasbase doubled of 2000 records,
where the disk of esch backend has 100 records. In Tebie 3 we notice one data
ancmaly, the standard deviation for request (8) in the one~backend-with-1000-
records configuration. Since we did not conduct sn internal performance mess-
urement on this request, we are not sure what causes this skewed stenderd
deviation, and hence will not sttempt to offer an explanation of this anomaly.

Given the data presented in Table 3, we can now attempt to verify or
disprove the two MEDS performance claims. We begin by calculsting the
response-time improvement for the nine requests. In Table 4 we present the
response-time improvement for the data given in Table 3. Notice that the
response-time improvement is Ilowest for request (1), which represents »
retrieval of two records of the dutabese. On the cther hand, the response-time

-16-

SO
"8,
*ot’s e

0

*

PRk e LT

— . -

.'-%'
.

ey

:_.
.f-‘."‘; ‘

4 £ 4

-
1

>

=
Tty

g

£l .l:"

e PP ¥
Y N) LA
> ¥ L 3
"‘q'_’ AR i 2]

s

)

MR
IR AL AL A S

2o o

33

AT L BATRS
N i L

'3\' “"'q.' Ch iy \r.r..-"..-- " ¢ L) f,'.". 0 "'v‘\f~ ~"’“i‘ _\‘

P

L)

LY
]
:
’
v
!
Y
%
¥
.
N

-"c'd"

One_Backend T Two ends

e FoET || R || R

mean | stdev mean | stdev mean | stdev

3.208|0.0189|| 2.061|0.0324|| 3.352|0.0282
13.601{0.0256|| 7.511{0.0339|| 14.243|0.01856
26.492|0.0244|| 14.164]0.0260| | 26.737|0.0406
52.005{0.0639| | 26.586|0.0204|| 52.173|0.0338
21.449|0.0336|| 11.309|0.0375|| 21.550|0.0237
42.235|0.0326| | 21.622{0.0424|| 42.287|0.0400
12.285|0.0408|| 6.642|0.0289|| 12.347|0.0371
22.532|0.0296| | 11.764|0.0300|| 22.583}0.0110
23.913|0.1115|| 12.624|0.0350] | 24.169|0.0181

Table 3 R T w te |
¢ PerIgemnceE Iu;mm'm;z ma

OIO|NIOIN|HIWIN]-

Ropest "ﬁg"‘“‘”“
r rgv
1
: | &4
3 ‘48.94
5 47.%
(] 48,
7 45,
8 47
) 47.21
No Internal-
rement tware

Table 4. Ixfugunt'ons'TE and é?nt Between

improvement. of request (4), which retrieves all of the database information is
highest, approaching the upper bound of fifty percent. In general, we find
that the response-time improvement increases as the number of records
retrieved increases. This seems to support a hypothesis that even if the date-
base is larger, the response-time improvement will remain at s relatively high
(between 40 an 50 percent) level.

Next, we calculate the response-time reduction for each of the nine
request. In Table 5 we present the response-time reductions for the deta given
in Table 3. Notice that the response-time reduction is worst for request (1),

T T L N A T e, N N T S N A R e Tt T T T T RGRA RSO CAR
M

¥

D 'g .
‘o W
] s
PR *
& c
PR .
vn'y Ce'e Y et

’,

"I' .

r'-' N _v.;’t)

4y Syt

e o TS
)

&]
Lets
Yo 110,

%

“..::::

X
-,
.y,]

Sl K
AN Y
TR

vy, g i T Nl Vg, N K K, Sl L Bl TN 875 1R ! A P TGN 5 O N ST R I DN - S S G SRl - S DS SN I IR Rt e .f._t'..._.mil ¥/

-
5\2."';&
[-‘ -
A

a1, ¢

:

STl
:
3
4
5
6
7
8
9

8 | mooo000M
s QBB RNV S

No
Measurement tware

Teble 5. ‘&:fig:ntwnlirE%cggn Be

which represents a retrieval of two records of the database. On the other
hand, the response-time reductions for the requests which access larger por-
tions of the database, requests (4) and (6), have only a small response-time
reduction. In genera!, we found that the response-time reduction decreases as
the number of records retrieved incresses, i.e., the response time remains
virtually constant. Again we seem to have evidence to support the
hypothesis that, as the size of the response set increases for the same
request, the response-time reduction will decrease to a relatively low (0.1%
or less) level.

:
8

Table 6 provides the results of external performance measurement of MBDS
with internal performance measurement software in place. There are two parts
to Table 6. Each part contains the mean and the standard deviation of the
response-times for the requests (1) through (6). The two parts of Table 6
represent two different configurations of the MBDS hardware and the datsbase
capacity. Part one has configured MBDS with one backend and with the database S
of 1000 records. Part two has configured MIDS with two backends, with the A
databese of 1000 records, split evenly between the disks of the backends. We N
did not measure the response times with two thousand records distributed over .
two beckends. We felt that no additional information would be gained by con- :::'.:;;3:3‘;
ducting the messurements. I

-18-

Y
E\'.\';
- g - - e~ IR R AN T g p . P - - o e - g . ! o
N M P N NN LA N NGO N AP AT s LK XL O e A s G G S L K A, A IASIATASL BT,

o S S SEDN i W A S O A WA N A St A S AL AR A AL XA NN MR N A S A S A bt N Sn E O Mpl va T spl Ml Sp b tull ao Ak ol Apts mal o

!
}

;
3
b
!
L]

(A aa

»

.; '_r..a".q‘ &>, ‘d',;(._-’. g

)

| O g || T By
A. .

mean | stdev mean | stdev
3.205|0.0436 2.219|0.0474
13.418|0.0172 7.401{0.0277
25.903|0.0119| | 13.854]0.0061
50.750|0.0374| | 26.402|0.0506
20.972|0.0271| | 11.244|0.0628
41.262|0.0331|| 21.517|0.0575

DINILIWIN] -

Tab! . R i in seconds) Wi
sble 6 Ihn:ernai Berfgr'v":ngnuasurun)ong'gftun

4.2, The Internal Performance Measurement Overhead

An interesting anomaly is discovered when we compare the response times
of the external and internal performance measurement tests, i.e., parts one
and two of Tables 3 and 6 for requests (1) through (6). We had anticipated
that the addition of internal performance measurement software would add an
overhead to the response time of requests. In the transition from A.E to A.I
and from B.E to B.I we expected there to be in an increase in the response
times for the coomon requests. We actually found a general! improvement, from
0.1% to 5%, in the response times of the requests when the internal perfor-
mance measurement software is part of the MBDS code. What could have caused
the anomaly? One hypothesis is that this is due to the manner in which MBDS
is implemented on the backends. Currently, there is not sufficient virtual
memory per process available on each backend. The result is that disk overlays
are used to organize the code for each process in MBDS. The additional inter-
nal performance measurement code may cause the operating system to overlay
differently, thereby benefiting the overall performance of MBDS. We still
believe that there is an overhead induced by the internal measurement code and
Table 7 provides evidence by demonstrating that the response-time improvement
achieved by adding a backend is inferior to the corresponding figures in Table
4,

L~

-19-

- e -y wy Vg0
A WA A G SRS KO o

J'..".’-:"‘I'.-."-:\-'_‘.:l..'.."\o"_.-'\f\'-'\-'..-:..-'\-:.‘-:\":\'-',;-:_:'.;-": . ‘-.:t'.;f- T, g ‘b.‘:p';\.:\“i.‘;.

‘g
 *

| D)

1

-
)

HAIN

LX A0 A

Table 7. Response Ti
sble Imfig.oratlons'rllmd

4.3. The Internal Porfoﬁmnce Measurement Results

Table 8 provides the resuits of the internal performance measurement of
MBDS for a retrieval request. The times measured for each message-handling
routine are given for both request (1) and (2). The message-handling routines
are listed with the MBDS process which contains the routine. Although the
results are given to four decimal places, we only trust the accuracy to the
second decimal place (see Section 3.4). Basically, what can we cbeerve sbout
the col lected message-handling times? We see that the control ler processes,
i.e., Request Preparation and Post Processing, spend very little time in pro-
cessing the retrieval request. This is a major design goal of MBDS and is
necessary to prevent a bottieneck at the controller when the number of back-
ends increases substantially. It appears that this gos! is met successfully.
We aiso cbserve that the results ocbtained from Concurrency Control are con-
sistent and of short duration. This is expected since there is only one
request in the system at a time and no access contention can occur. These
tables should then be considered as containing the best—case times. The major-
ity of work done in the backend is at Record Processing. Observing the process
timings in Record Processing, we see that, for both requests, the addition of
an extra beckend reduces the record processing time by nearly half.

o
vy
-
‘m
N
LR
L.’ A
S
N
L
X
[
~J‘
. _..
T,

ey J
O 4
»

RUMEY S

LG

&
251Y S

)

5. CONCLLSIONS AND FUTURE WORK

PN Y

We have shown that the two basic performance claims of the multi-backend
detabese system are valid. While these results are preliminary, they are
encouraging. Overall, the response-time improvement ranged from 38.07 percent
to 48.94 percent, when the number of beckends and their disks is doubled for

.,.".-.

¢
i % a0y

B EN XK i

=20~

:A
e

%, e e .- - : . e .
Rk N (N P R A LRt g, GO A S D S, L A AN oW D NN At 3

.

TS
73]
".-',n!_g

MBDS MassTge m:st One Two "f
P nd kend ends AN

Request. rd t 1 0. 0.00; i
) Preparation|lo Post Proc| 2 0. O.Q& L}j
: P 1 0.0200 | 0.0190]
: TrafficUnit| 2 | 00180 | 0.018 i
Broadcast | 1 0.0025 | 0.0025 o
., Resu|ts 2 0.0065 | 0.00% :..
Post i 1 0.0465 0.0250 O
v Processing esults 2 0.0890 0.0813 S
- i recto Parsed 1 0.0699 | 0.0450 N
Raneseeait|Trartrehie] 2 | 8:88%8 | 8:8%% oy
Did Sets 1 0.0516 | 0.0510
Locked 2 | o008 | o086 -
Cid Sets 1 0.0533 | 0.0349 o
Locked 2 | 00450 | o.0dx: S
i 1 0.0391 %1
Descpigter | 1 na 0.0658 5

Conc: Cids f 1 0.0424 0.0433

ConeroT Trstfic O] 2 | 3388 | 8.3 ;_
g Did_Sets 1 0.0566 | 0.0408 i
- Tofficonis] 2 0.0808 | 0.0516 &
- Rid Sets 1 0.0025 | 0.0016 N
> el eased 2 0.0008 0.0008 i
. Record tire 1 2.6462 1.3775 —
< Processing rocess 2 12.7100 6.5716
- ith| 1 0.0466 | 0.0433 PO
: Bravegiamitn| 3 0.0433 | 0.033 ey
g 0id 1 0.0130 | 0.0148
Request. 2 0.0131 0.0168 r
- 10 1 0.0844 | 0.0865 I
- ead 2 0.8593 0.8863 NN
- Di 1 0.0799 | 0.0741 NN
- Input/Dtout| 3 0.0783 | 0.0726 N
' s
; Table 8 Handling Routine P i %
% ® % Yimes’for a ;ggieva?laeemergctessmg \a
. . R
v the same database. The low end of the scale represented a request which "'?,,
& . involved the actual retrieval of only two records. The high end represents a :
. request which has to access all of the database information. The response-
time reductions were also impressive, ranging from a 4.49 percent change to a .‘:
0.12 change. In cther words, when we double the number of backends and their :-
3 disks, the response time of a request is nearly invariant despite the fact L:
':;' that the response set for the request is doubled. Another crucial discovery .,:
E
' et
n -21- ‘,'.;'.ﬁ
:
S A R S T T O A R A YT Y0

T T L RN S T a8 a M T K YIAT AT RTINS LY % o o, N SR A T WP o S P S SR OO L T ST I S AN AT NI AN 7

s

» thet we mede was that the results were consistent and reproducible. The tests

-. were conducted at least twice for most of the request set, with the testing

- done on different days by different pecple. The resulting dats was consistent
snd reproducible. The data presented in this paper represents the last set of
tasts for the request set.

The next logical step in the performance of the multi-backend database
system is to -extend the testing to include the other request types, update, .
insert and delete. Additionally, there are still some more tests to run on
the retrieval request. We should also investigete the effect of the direc-
tory structure on performance. In particular, we should try to determine how
* much of an effect the descriptor definitions for a directory attribute have on
the performence deta. Finally, we should conduct some tests on the
- secondary-memory version of the directory tables to evaluate just how much an
effect this version will have on the performance dats.

o asa, 80 4
-".‘5' LA

Because MBDS is intended for microprocessor-based backends, winchester-
type disks and an Ethernet-|ike broadcast bus, we will not continue our bench-
mark work on the present VAX-PIPs configuration. Instead, we plan to download
MBDS to either MicroVaxs or Sun Workstations. With either choice, we can
utilize a brosdcast bus, which was not availsble when the project. began. We
mey aiso eliminate all the physical and virtual memory problems. In the new

' environment we can perhaps cbtain a more accurate messurement of the internal
- performance measurement software overhead, conduct a more thorough benchmark-

ing of MBDS, and study various benchmarking strategies.

A
o
Pl
-
1:,
o
o
LJ
-
e
hd e g
- .r ..I
3 :‘\0"
0.. -‘:\;
el
. '-'\;'
‘.. ..\ .
. A5
: -22- ¥
p » .'D
» b .
A 2

DI A oSO RO 50 e TR IR NN R 10 59 A AR S D AR DA S S A IR A AL S T AN

gzx) R B RN b
ne, | tatlon of » Mult ond Da
Part i&l k&spgew riented rs?on w "'3:3
"3“%'%93#'9"” r;énu%ed Sct%go terey, quorma g:l!t
) rjia "The Inpl ntation of ltl
W gamu ?ﬂ&) :;T\d T."’E. Rev| s*dmt' og;re %
i:hoo ‘murey’,‘agmmla Mglcg epo

).
W} et a !ementatnon 2 l'hltui:ckend D::‘E::’mermg
pe

'T h , Na P raduate
t;ere;:eegfffor:fa?'c.ba val Fostg

)Elbtn-éa]ke’;s.aobao’(n?n g orma :gem?"?'s of”ta
P%h“'&q.:"gu&&?z,m.t,,@?wﬁ uf%,":.s?, Sgort, U ISR i

Pm?t.l-éack l-bnao DK t@ oE psrfom:g:g'gznp?ov Analyins qmllt.;

t. h
ns'mlongta‘be &lversnt.y, Tec pocal

rr82] rr, .S. "The Inplemen of MJI: end
éﬁ‘ B s &miﬁ.%a“?’mt LA

si y, , Ohio, January

£Sch|84 en%ce?-: |S|;an buego, raknve ums Performance Test Report," Naval Ocean

Strag4 SraVﬁe “A Me £ hmark Relati | Datsbase
chme;, 3!1 rD ssertatlon, md&-.?g" tggeaethn?versn';;? ?ﬁ: rona

------- - O T S . D O R R L A
- SN0 -. .._-.. R SR -:.. a T o ® o> 2o .' LR K n\ o -f\-.-‘f‘. .'

'''''''''''''''''

! .:z‘g)
YA

u‘..
W~

5
Xy

v e v
,‘:"'5‘:':: *
R Rl NP
CARRS

e
! .'. " -":'é- ". ..

."...; I'L' Al. :
,l ’l <, . 'f'_!.'
P NN

T
»

7
L4

rr,

X,
o 68
BEAN

p

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron: Station ' '
Mexandria,ﬁ VA 22314

Dudley Knox Library ‘ 2
Code 0142

Naval Postgraduate School

Monterey, CA 93943

Office of Research Administration 1
Code 012A \

Naval Postgraduate School

Monterey, CA 93943

Chairman, Code 52ML 10
Computer Science Department

Naval. Postgraduate School >
Monterey, CA 93943

Prof. David K. Hsiaoc, Code 52Hq ' 130

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Chief of Naval Research 1
Arlington, VA 22217

!, '2:' "’I .
G
L Z:n'« l'n',

;.':})
'c’i-f

S . ..
. R

T OREE .
P) 4

e,
A

'y
&

e S R N S 0

D A A

